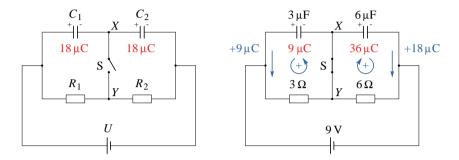

Physik-Marathon 2023

Eine elektrische Schaltung wird – wie im Bild gezeigt – aufgebaut.

Dabei betragen die Werte der Kapazitäten und Widerstände: $C_1=3\,\mu\text{F},\,C_2=6\,\mu\text{F},\,R_1=3\,\Omega,\,R_2=6\,\Omega.$ Die Spannung sei $U=9\,\text{V}.$

Zu Beginn ist der Schalter S offen, die Kondensatoren sind vollständig aufgeladen.

Berechne die gesamte Ladung in μ C, die von Punkt Y nach Punkt X fließt, wenn der Schalter einmalig geschlossen wird!


Lösung und Punktverteilung auf der Rückseite.

Lösung:

Solange der Schalter offen ist, fließt im unteren Zweig ein konstanter Strom durch die Widerstände und im oberen Zweig laden sich beide Kondensatoren auf (Bild unten links). Deren Ladungen Q können durch

$$Q = C_{\text{ges}} U = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} U = \frac{3 \,\mu\text{F} \cdot 6 \,\mu\text{F}}{3 \,\mu\text{F} + 6 \,\mu\text{F}} \cdot 9 \,\text{V} = 18 \,\mu\text{C}$$
 (1)

(Reihenschaltung der Kondensatoren C_1 und C_2) berechnet werden. Diese Ladungen tragen beide Kondensatoren: $Q_1 = Q_2 = Q$. Dies ist der Zustand vor dem Schließen des Schalters.

Wenn nun der Schalter S geschlossen wird (Bild oben rechts), entstehen zwei geschlossene Stromkreise im oberen Teil, der linke mit R_1 und C_1 und der rechte mit R_2 und C_2 . Die weiterhin angeklemmte Spannungsquelle U sorgt dafür, dass über den Widerständen R_1 und R_2 im unteren Zweig konstante Spannungen abfallen (wie bereits vor dem Schließen von S auch), die aber jetzt für ein Umladen der Kondensatoren sorgen.

Dabei beträgt der Spannungsabfall an R_1 , also am linken 3Ω -Widerstand, nach der Spannungsteilerregel

$$U_1 = \frac{3\Omega}{3\Omega + 6\Omega} 9 \text{ V} = 3 \text{ V}$$
 (2)

und an R_2 , am rechten 6 Ω -Widerstand,

$$U_2 = \frac{6 \Omega}{3 \Omega + 6 \Omega} 9 V = 6 V, \tag{3}$$

die zusammen die 9 V der Batterie ergeben (wie bereits vor dem Schließen von S auch). Daraus folgt, dass die Ladung auf C_1 , dem linken 3 μ F-Kondensator, nun

$$Q_1' = C_1 U_1 = 3 \,\mu\text{F} \cdot 3 \,\text{V} = 9 \,\mu\text{C} \tag{4}$$

und auf C_2 , dem rechten 6 μ F-Kondensator,

$$Q_2' = C_2 U_2 = 6 \,\mu\text{F} \cdot 6 \,\text{V} = 36 \,\mu\text{C} \tag{5}$$

beträgt. Der zeitliche Verlauf der Umladungsvorgänge spielt hier keine Rolle; es werden nur Anfangs- und Endzustand (also nach unendlich langer Zeit) betrachtet.

Im Vergleich mit den Ladungen $Q_1=Q_2=18\,\mu\mathrm{C}$ vor dem Schließen des Schalters fließen also

$$\Delta Q_1 = |Q_1' - Q_1| = |9 \,\mu\text{C} - 18 \,\mu\text{C}| = 9 \,\mu\text{C} \tag{6}$$

entgegengesetzt des Uhrzeigersinns vom linken Kondensator ab, und damit im Zweig YX von unten nach oben (technische Stromrichtung von Plus nach Minus beachten), während

$$\Delta Q_2 = |Q_2' - Q_2| = |36 \,\mu\text{C} - 18 \,\mu\text{C}| = 18 \,\mu\text{C} \tag{7}$$

im Uhrzeigersinn auf den rechten Kondensator fließen, im Zweig YX ebenfalls von unten nach oben. Im Bild sind dabei die Richtungen der Flüsse der positiven Ladungen in blau eingetragen.

Für den Querzweig von Y nach X bedeutet das, dass dort insgesamt eine Ladung von

$$\Delta Q = \Delta Q_1 + \Delta Q_2 = 27 \,\mu\text{C} \tag{8}$$

fließt. Es ist tatsächlich die Summe beider fließenden Ladungen von ΔQ_1 und ΔQ_2 , da der Umlaufsinn in beiden Maschen zwar gegensinnig ist (s. Bild oben rechts), für den Strang YX aber die Ladungen in gleicher Richtung fließen.

Punktverteilung:

- 0,3 Punkte für die Berechnung der Ladungen auf C_1 und C_2 zu Beginn nach (1)
- 0,2 Punkte für die Berechnung der Spannungsabfälle U_1 und U_2 nach (2) und (3)
- 0,3 Punkte für die Berechnung der neuen Ladungen Q'_1 und Q'_2 nach (4) und (5)
- 0,1 Punkte für die Berechnung der fließenden Ladungen ΔQ_1 und ΔQ_2 nach (6) und (7)
- 0,1 Punkte für die Berechnung der fließenden Gesamtladung $\Delta Q = 27\,\mu\text{C}$ nach (8)